

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

1. Differentiate between stack and queue Ans.

2. Convert infix expression into prefix expression or

postfix. Ans.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

3. Describe working of linear search with an example.

Ans.

In linear search, search element is compared with each element from the list in a sequence.
Comparison starts with first element from the list and continues till number is found or comparison
reaches to the last element of the list.
As each element is checked with search element, the process of searching requires more time. Time

complexity of linear search is O (n) where n indicates number of elements in list.
Linear search on sorted array:-On sorted array search takes place till element is found or comparison

reaches to an element greater than search element.

Example:- Using array representation Input list 10, 20, 30, 40, 50 and Search element 30, Index =0

Iteration 1

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

4. Find the position of element 29 using binary search

method in an array ‘A’ given below. Show each step.

A={11,5,21,3,29,17,2,43} Ans.
An array which is given A[]= {11,5,21,3,29,17,2,43} is not in sorted manner, first we need to sort them in

order; So an array will be A[]={2,3,5,11,17,21,29,43} and the value to be searched is VAL = 29. The binary

search algorithm will proceed in the following manner.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

So, Element 29 is found at 6th location in given array A[]={2,3,5,11,17,21,29,43}.

5.Explain Double Ended Queue with example

Ans.

Deque (or double-ended queue)

The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and

deletion operations are performed from both ends. We can say that deque is a generalized version of

the queue.

Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO

rule. The representation of a deque is given as follows -

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Types of deque

There are two types of deque -

o Input restricted queue o

Output restricted queue

Input restricted Queue

In input restricted queue, insertion operation can be performed at only one end, while deletion can be

performed from both ends.

Output restricted Queue

In output restricted queue, deletion operation can be performed at only one end, while insertion can be

performed from both ends.

Operations performed on deque

There are the following operations that can be applied on a deque -

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

o Insertion at front o Insertion at

rear o Deletion at front o Deletion

at rear

We can also perform peek operations in the deque along with the operations listed above. Through peek

operation, we can get the deque's front and rear elements of the deque. So, in addition to the above

operations, following operations are also supported in deque -

o Get the front item from the

deque o Get the rear item from

the deque o Check whether the

deque is full or not o Checks

whether the deque is empty or

not

6. Describe working of bubble sort , insertion , selection with example. Ans.

1. Bubble Sort Working:

• Bubble sort compares adjacent elements in an array and swaps them if they are in the wrong order.
• This process is repeated for each element, and after each complete pass, the largest unsorted

element "bubbles" up to its correct position.
• The algorithm continues until no more swaps are needed, indicating that the array is sorted.

Steps:

1. Compare the first two elements. If the first is greater than the second, swap them.
2. Move to the next pair and repeat until you reach the end of the array.
3. After each full pass through the array, the largest element gets placed in its correct position.
4. Repeat the process for the remaining unsorted part of the array until the entire array is sorted.

Example (Sorting the array [5, 3, 8, 4, 2]):

1. First pass:

o Compare 5 and 3 → Swap them → [3, 5, 8, 4, 2]

o Compare 5 and 8 → No swap → [3, 5, 8, 4, 2] o

 Compare 8 and 4 → Swap them → [3, 5, 4, 8, 2]

o Compare 8 and 2 → Swap them → [3, 5, 4, 2, 8]

o After the first pass, 8 is in its correct position.

2. Second pass:

o Compare 3 and 5 → No swap → [3, 5, 4, 2, 8] o

 Compare 5 and 4 → Swap them → [3, 4, 5, 2, 8]

o Compare 5 and 2 → Swap them → [3, 4, 2, 5, 8]

o After the second pass, 5 is in its correct position.

3. Third pass:

o Compare 3 and 4 → No swap → [3, 4, 2, 5, 8] o

 Compare 4 and 2 → Swap them → [3, 2, 4, 5,

8] o After the third pass, 4 is in its correct

position.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

4. Fourth pass:

o Compare 3 and 2 → Swap them → [2, 3, 4, 5, 8]

o Now the array is sorted.

Time Complexity:

• Best case: O(n)O(n)O(n) (if the array is already sorted)
• Average and worst case: O(n2)O(n^2)O(n2)

2. Insertion Sort
Working:

• Insertion sort builds the final sorted array one element at a time.
• It works by picking elements from the unsorted part of the array and inserting them into the correct

position in the sorted part of the array.
• It shifts elements in the sorted part to the right to make space for the new element.

Steps:

1. Start with the second element (since the first is considered sorted).
2. Compare the current element with the elements in the sorted part.
3. Move elements that are greater than the current element to one position ahead.
4. Insert the current element in the correct position.
5. Repeat until the entire array is sorted.

Example (Sorting the array [5, 3, 8, 4, 2]):

1. Insert 3: Compare with 5 → Move 5 to the right → [3, 5, 8, 4, 2]
2. Insert 8: No change as 8 is greater than 5 → [3, 5, 8, 4, 2]
3. Insert 4: Compare with 8 → Move 8 → Compare with 5 → Move 5 → Insert 4 → [3, 4, 5, 8, 2]
4. Insert 2: Compare with 8, 5, 4, and 3 → Move all elements → Insert 2 → [2, 3, 4, 5, 8]

Time Complexity:

• Best case: O(n)O(n)O(n) (if the array is already sorted)
• Average and worst case: O(n2)O(n^2)O(n2)

3. Selection Sort Working:

• Selection sort works by selecting the smallest (or largest) element from the unsorted part of the

array and swapping it with the first unsorted element.
• It repeats this process until the entire array is sorted.

Steps:

1. Find the smallest (or largest) element in the unsorted part of the array.
2. Swap it with the first unsorted element.
3. Move the boundary of the sorted part of the array to the right and repeat until the array is sorted.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Example (Sorting the array [5, 3, 8, 4, 2]):

1. First pass: Find the smallest element (2) and swap it with the first element → [2, 3, 8, 4, 5]
2. Second pass: Find the smallest element in the remaining unsorted part ([3, 8, 4, 5]), which is 3 →

No swap → [2, 3, 8, 4, 5]

3. Third pass: Find the smallest element in the remaining unsorted part ([8, 4, 5]), which is 4 → Swap

it with 8 → [2, 3, 4, 8, 5]

4. Fourth pass: Find the smallest element in the remaining unsorted part ([8, 5]), which is 5 → Swap it

with 8 → [2, 3, 4, 5, 8]

5. Now the array is sorted.

7. Construct a binary search tree for following elements: 30,100,90,15,2,25,36,72,78,10 show each

step of construction of BST Ans.
Stepwise construction of Binary search tree for following elements: 30,100,90,15,2,25,36,72,78,10 is as

follows:

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

8. Describe circular linked list with suitable diagram. Also state advantage of circular linked list over

linear linked list.
Ans.

Circular Linked List A circular linked list is a variation of linked list in which the last element is linked to the first

element. This forms a circular loop.

Struct node

{

int data;

Struct node *next;

};

Typedef struct node *Node;

Node *start = null;

Node *last = null; For

example:

Advantages of Circular Linked Lists:

1) Any node can be a starting point. We can traverse the whole list by starting from any point. We just need to stop

when the first visited node is visited again.

2) Useful for implementation of queue. Unlike this implementation, we don’t need to maintain two pointers for front

and rear if we use circular linked list. We can maintain a pointer to the last inserted node and front can always be

obtained as next of last.

3) Circular lists are useful in applications to repeatedly go around the list. For example, when multiple applications are

running on a PC, it is common for the operating system to put the running applications on a list and then to cycle

through them, giving each of them a slice of time to execute, and then making them wait while the CPU is given to

another application. It is convenient for the operating system to use a circular list so that when it reaches the end

of the list it can cycle around to the front of the list.

4) Circular Doubly Linked Lists are used for implementation of advanced data structures like Fibonacci Heap.

9. Write a program to traverse a linked list.
Ans.
#include <stdio.h>
#include <stdlib.h>

A circular linked list can be either singly linked or doubly linked. for singly linked list, next pointer of last item
points to the first item In doubly linked list, prev pointer of first item points to last item as well. We declare
the structure for the circular linked list in the same way as follows:

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

struct Node {

int data;
 struct Node* next;
};

struct Node* createNode(int new_data) {
 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

new_node->data = new_data; new_node->next = NULL; return

new_node;
}

// Function to traverse and print the singly linked list void

traverseList(struct Node* start) {

 while (start != NULL) {

 printf("%d ", start->data);

 start = start->next;
 }
 printf("\n");
}

int main() {

 struct Node* start = createNode(10); start-

>next = createNode(20); start->next->next =

createNode(30); start->next->next->next =

createNode(40);
 traverseList(head);

 return 0;
}

10. Write C program for performing following operations on array: insertion, display.
Ans.
#include<stdio.h> #include<conio.h>
void main()
{
inta[10],x,i,n,pos;
clrscr();
printf(“Enter the number of array element\n”); scanf(“%d”,&n);
printf(“Enter the array with %d element\n”, n);

for(i=0;i<n;i++) scanf(“%d”,&a[i]);

printf(“Enter the key value and its position\n”); scanf(“%d%d”

,&x,&pos);
for(i=n; i >= pos; i--)
{
a[i]=a[i-1];
}

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

a[pos-1]=x; printf(“Array

element\n “);

for(i=0;i<n+1;i++)

printf(“%d\t”,a[i]); getch();
}

11. Differentiate between binary search and sequential search.
Ans.

12. Evaluate the following prefix expression: - * + 4 3 2 5 and 5, 6, 2, +, *, 12, 4, /, - show diagrammatically

Ans.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Result of above prefix expression evaluation – 37

13. Sort the given number in ascending order using Radix sort: 348, 14, 641, 3851, 74. Ans.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

14. Write an algorithm to delete and insert a node from the beginning and end of a circular linked list.
Ans.
Delete at Beginning (Circular Queue):

Step 1:
IF FRONT = -1
◦ Write "UNDERFLOW"
◦ Goto Step 5
◦ [END of IF]

Step 2:
SET VAL = QUEUE[FRONT]

Step 3:
IF FRONT == REAR
◦ SET FRONT = REAR = -1
◦ ELSE
◦ IF FRONT = MAX - 1
◦ SET FRONT = 0
◦ ELSE
◦ SET FRONT = FRONT + 1
◦ [END of IF]
◦ [END of IF]

Step 4:
Write "Deleted Element = VAL"

Step 5:
EXIT

Delete at End (Circular Queue):

Step 1:
IF FRONT = -1
◦ Write "UNDERFLOW"
◦ Goto Step 5
◦ [END of IF]

Step 2:
SET VAL = QUEUE[REAR]

Step 3:
IF FRONT == REAR
◦ SET FRONT = REAR = -1
◦ ELSE
◦ IF REAR = 0
◦ SET REAR = MAX - 1
◦ ELSE
◦ SET REAR = REAR - 1

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

◦ [END of IF]
◦ [END of IF]

Step 4:
Write "Deleted Element = VAL"

Step 5:
EXIT

Insert at Beginning (Circular Queue):
Step 1:
IF (FRONT == 0 AND REAR == MAX - 1) OR (FRONT = REAR -1)
◦ Write "OVERFLOW"
◦ Goto Step 6
◦ [END of IF]

Step 2:
IF FRONT = -1
◦ SET FRONT = REAR = 0
◦ Goto Step 5
◦ [END of IF]

Step 3:
IF FRONT = 0
◦ SET FRONT = MAX - 1
◦ ELSE
◦ SET FRONT = FRONT - 1
◦ [END of IF]

Step 4:
SET QUEUE[FRONT] = VAL

Step 5:
Write "Inserted Element = VAL"

Step 6:
EXIT

Insert at End (Circular Queue):

Step 1:
IF (FRONT == 0 AND REAR == MAX - 1) OR (FRONT = REAR + 1)
◦ Write "OVERFLOW"
◦ Goto Step 6
◦ [END of IF]

Step 2:
IF FRONT = -1
◦ SET FRONT = REAR = 0
◦ Goto Step 5

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

◦ [END of IF]

Step 3:
IF REAR = MAX - 1
◦ SET REAR = 0
◦ ELSE
◦ SET REAR = REAR + 1
◦ [END of IF]

Step 4:
SET QUEUE[REAR] = VAL

Step 5:
Write "Inserted Element = VAL"

Step 6:
EXIT

15. Draw an expression tree for the following expression: (a-2b+5e) 2 * (4d=6e) 5
Ans.

16. Write an algorithm to insert an element at the beginning and end of linked list
Ans.
Inserting a Node at the Beginning of a Linked List

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 7

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET NEW_NODE->DATA = VAL

Step 4: SET NEW_NODE-> NEXT = START

Step 5: SET START = NEW_NODE

Step 6: EXIT

Inserting a Node at the End of a Linked List

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET NEW_NODE->DATA = VAL

 SET NEW_NODE->NEXT = NULL

Step 4: PTR=START

Step 5: Repeat Step 6 while PTR->NEXT != NULL

Step 6: SET PTR = PTR->NEXT

 [END OF LOOP]

Step 5: SET PTR->NEXT = NEW_NODE

Step 6: EXIT

17. Write an algorithm for performing push and pop operations on stack.
Ans.
Push algorithm:
Step 1: IF TOP = MAX-1

PRINT OVERFLOW
 Goto step 4
[END OF IF]
Step 2: SET TOP = TOP + 1
Step 3: SET STACK[TOP] = VALUE
Step 4: END

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Pop algorithm:
Step 1: IF TOP = NULL PRINT

UNDERFLOW
Go to step 4

[END OF IF]
Step 2: SET VAL = STACK[TOP]
Step 3: SET TOP = TOP - 1
Step 4: END

18. Write an algorithm to search a particular node in the given linked list.
Ans.
Step 1: SET PTR = HEAD
Step 2: Set I = 0
STEP 3: IF PTR = NULL
 WRITE "EMPTY LIST"
 GOTO STEP 8
 END OF IF

STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR != NULL

STEP 5: if ptr → data = item write i+1
 End of IF

STEP 6: I = I + 1

STEP 7: PTR = PTR → NEXT
[END OF LOOP]

STEP 8: EXIT

19. Create a singly linked list using data fields 90, 25,

46, 39, 56. Search a node 40 from the SLL and show the

procedure step-by-step with the help of a diagram from

start to end Ans.
To Search a data field in singly linked list, need to start searching the data field from first node of singly

linked list. ORIGINAL LIST:

SEARCHING A NODE STEP 1:
Compare 40 with 90
40!=90

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

20. Write an algorithm to count the number of nodes in

a singly linked list Ans.

0. Set Count =0

1. Initialize a node pointer, ptr = start.

2. Do following while ptr is not NULL

a. ptr = ptr -> next

b. Increment count by 1.

3. Return count.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

21. Traverse a tree in inorder preorder and post order

Ans.

Inorder Traversal: Q,E,F,R,D,H,B,A,I,J,K,C,L,P

Preorder Traversal: A,B,D,E,Q,F,R,H,C,I,J,K,L,P

Postorder Traversal: Q,R,F,E,H,D,B,K,J,I,P,L,C,A

22. Compare Linked List and Array (any 4 points) Ans.

Criteria Use Arrays When... Use Linked Lists When...

Memory Allocation Memory needs to be allocated in a

contiguous block.
Memory can be allocated dynamically

and non-contiguously.

Access Speed Fast access to elements by index is

required (O(1) access).
Access speed is not the primary

concern, and traversal is acceptable.

Size of Data Structure The size of the data structure is fixed or

known in advance.
The size of the data structure is dynamic

or frequently changing.

Insertion/Deletion Insertions and deletions are infrequent

and mostly at the end.
Frequent insertions and deletions are

needed, especially at the beginning or

middle.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

Memory Efficiency Memory efficiency is important, and

overhead from pointers should be

minimized.

Slightly higher memory usage is

acceptable due to the overhead of

pointers.

Complexity of
Implementation

Simplicity and ease of implementation

are priorities.
Flexibility and dynamic memory

management are priorities.

23. Explain circular Queue with it advantage and need

Ans.
A Circular Queue is a linear data structure that follows the FIFO (First In, First Out) principle but differs

from a regular queue in its way of handling the overflow condition. In a regular queue, when the queue is

full, no more elements can be added. However, in a circular queue, the last position of the queue is

connected back to the first position, forming a circle. This allows the queue to efficiently use space by

reusing the vacant positions created when elements are dequeued.
Advantages of Circular Queue:

1. Efficient Space Utilization: Unlike a regular queue, a circular queue allows the reuse of space that

becomes available once elements are dequeued, leading to better space utilization.
2. No Wasted Space: It ensures that there is no unused space, even if there are empty spots in the

queue.
Need of Circular Queue:

1. Fixed-Size Buffer: It is especially useful in scenarios like CPU scheduling or memory management

where a fixed-size queue is required, and elements are processed in a continuous loop.
2. Queue Overflow Prevention: It prevents overflow from happening prematurely as long as there is

available space in the queue.

24. Explain Priority queue with example Ans.

A priority queue is an abstract data type that behaves similarly to the normal queue except that

each element has some priority, i.e., the element with the highest priority would come first in a

priority queue. The priority of the elements in a priority queue will determine the order in which

elements are removed from the priority queue. Types of Priority Queue

There are two types of priority queue:

o Ascending order priority queue: In ascending order priority queue, a lower priority number is given

as a higher priority in a priority. For example, we take the numbers from 1 to 5 arranged in an
ascending order like 1,2,3,4,5; therefore, the smallest number, i.e., 1 is given as the highest priority in
a priority queue.

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

 o

Descending order priority queue: In descending order priority queue, a higher priority number is given
as a higher priority in a priority. For example, we take the numbers from 1 to 5 arranged in descending
order like 5, 4, 3, 2, 1; therefore, the largest number, i.e., 5 is given as the highest priority

Representation of priority queue

Now, we will see how to represent the priority queue through a one-way list.

We will create the priority queue by using the list given below in which INFO list contains the data

elements, PRN list contains the priority numbers of each data element available in the INFO list, and

LINK basically contains the address of the next node.

in a priority queue .

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

25. Explain Recursion with Factorial Program Ans.
Recursion is a programming technique where a function calls itself to solve a problem by breaking it down

into smaller sub-problems. Each recursive function has:
1. Base Case: A condition to stop the recursion.
2. Recursive Case: The part where the function calls itself with a smaller or simpler version of the

problem.
Factorial Program Using Recursion:
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It is

defined as:
• n! = n * (n-1) * (n-2) * ... * 1
• Base case: 0! = 1 Recursive Formula:
• For n > 0, n! = n * (n-1)!
• Base case: 0! = 1

C Program to Compute Factorial Using Recursion:

#include <stdio.h>

// Function to calculate factorial using recursion int

factorial(int n) {
 if (n == 0) return 1; // Base case: 0! = 1 return n *

factorial(n - 1); // Recursive case: n! = n * (n-1)!
}

int main() { int number;

printf("Enter a number: ");

scanf("%d", &number);
 printf("Factorial of %d is %d\n", number, factorial(number));

return 0; }
Explanation:

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• Base Case: When n == 0, the function returns 1 (since 0! = 1).

• Recursive Case: For n > 0, the function calls itself with n-1 and multiplies it by n.

 Example: For factorial(5), the function will compute 5 * 4 * 3 * 2 * 1.

Example Output:
mathematica
Copy code
Enter a number: 5
Factorial of 5 is 120

26. Define and Explain term
• Leaf Node
• Root Node
• Path
• Ancestor
• Descendants
• Level of Node
• Application of Queue
• Algorithm
• Queue Operation
• Stack Operation
• Link List Operation
• Array Operation
• Data Structure Operation
• Overflow of Stack
• Underflow of Queue Ans.

1. Leaf Node: A leaf node is a node in a tree that has no children.
2. Root Node: The root node is the topmost node in a tree, from which all other nodes originate.
3. Path: A path is a sequence of nodes connected by edges in a tree or graph.
4. Ancestor: An ancestor of a node is any node on the path from the root to that node.
5. Descendants: Descendants are all the nodes that can be reached by traversing down from a given

node.
6. Level of Node: The level of a node is the number of edges from the root to that node.
7. Application of Queue: A queue is used in scenarios like task scheduling, BFS in graphs, and

request handling.
8. Algorithm: An algorithm is a set of step-by-step instructions designed to solve a problem or perform

a task.
9. Queue Operation: Queue operations include enqueue (insertion), dequeue (removal), and peek

(viewing front element).
10. Stack Operation: Stack operations include push (insertion), pop (removal), and peek (viewing top

element).
11. Linked List Operation: Linked list operations include insertion, deletion, traversal, and search of

nodes.
12. Array Operation: Array operations include insertion, deletion, traversal, and search of elements.
13. Data Structure Operation: Data structure operations involve manipulating the elements of

structures like arrays, stacks, queues, etc.
14. Overflow of Stack: Stack overflow occurs when an attempt is made to push an element onto a full

stack.
15. Underflow of Queue: Queue underflow occurs when an attempt is made to dequeue from an empty

queue.

